A Rapid Method to Regenerate Piezoelectric Microcantilever Sensors (PEMS)
نویسندگان
چکیده
Piezoelectric microcantilever sensors (PEMS) can be sensitive tools for the detection of proteins and cells in biological fluids. However, currently available PEMS can only be used a single time or must be completely stripped and refunctionalized prior to subsequent uses. Here we report the successful use of an alternative regeneration protocol employing high salt concentrations to remove the target, leaving the functional probe immobilized on the microcantilever surface. Our model system employed the extracellular domain (ECD) of recombinant human Epidermal Growth Factor Receptor (EGFR) as the probe and anti-human EGFR polyclonal antibodies as the target. We report that high concentrations of MgCl2 dissociated polyclonal antibodies specifically bound to EGFR ECD immobilized on the sensor surface without affecting its bioactivity. This simple regeneration protocol both minimized the time required to re-conjugate the probe and preserved the density of probe immobilized on PEMS surface, yielding identical biosensor sensitivity over a series of assays.
منابع مشابه
Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers.
Rapid and sensitive detection of serum tumor biomarkers are needed to monitor cancer patients for disease progression. Highly sensitive piezoelectric microcantilever sensors (PEMS) offer an attractive tool for biomarker detection; however, their utility in the complex environment encountered in serum has yet to be determined. As a proof of concept, we have functionalized PEMS with antibodies th...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملArray lead zirconate titanate/glass piezoelectric microcantilevers for real-time detection of Bacillus anthracis with 10 spores/ml sensitivity and 1/1000 selectivity in bacterial mixtures.
An array of three identical piezoelectric microcantilever sensors (PEMSs) consisting of a lead zirconate titanate layer bonded to a glass layer was fabricated and examined for simultaneous, in situ, real-time, all-electrical detection of Bacillus anthracis (BA) spores in an aqueous suspension using the first longitudinal extension mode of resonance. With anti-BA antibody immobilized on the sens...
متن کاملRational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode
This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric trans...
متن کاملA rapid and facile signal enhancement method for microcantilever-based immunoassays using the agglomeration of ferromagnetic nanoparticles.
A rapid and facile signal enhancement method for detecting alpha-fetoprotein (AFP) was developed using the magnetic agglomeration of ferromagnetic nanoparticles and microcantilever sensors. The resonance frequency and deflection of the cantilevers were found to be more than 10-fold greater than that before physical agglomeration of the free nanoparticles around the magnetized nanoparticles.
متن کامل